Complex Jacobi matrices and quadrature rules

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Jacobi Matrices

Complex Jacobi matrices play an important role in the study of asymptotics and zero distribution of Formal Orthogonal Polynomials (FOPs). The latter are essential tools in several elds of Numerical Analysis, for instance in the context of iterative methods for solving large systems of linear equations, or in the study of Pad e approximation and Jacobi continued fractions. In this paper we prese...

متن کامل

On Generalized Sum Rules for Jacobi Matrices

This work is in a stream (see e.g. [4], [8], [10], [11], [7]) initiated by a paper of Killip and Simon [9], an earlier paper [5] also should be mentioned here. Using methods of Functional Analysis and the classical Szegö Theorem we prove sum rule identities in a very general form. Then, we apply the result to obtain new asymptotics for orthonormal polynomials.

متن کامل

Gauss-Jacobi-type quadrature rules for fractional directional integrals

Fractional directional integrals are the extensions of the Riemann-Liouville fractional integrals from oneto multi-dimensional spaces and play an important role in extending the fractional differentiation to diverse applications. In numerical evaluation of these integrals, the weakly singular kernels often fail the conventional quadrature rules such as Newton-Cotes and Gauss-Legendre rules. It ...

متن کامل

Gauss Legendre-Gauss Jacobi quadrature rules over a tetrahedral region

This paper presents a Gaussian quadrature method for the evaluation of the triple integral ( , , ) T I f x y z d xd yd z = ∫∫∫ , where ) , , ( z y x f is an analytic function in , , x y z and T refers to the standard tetrahedral region:{( , , ) 0 , , 1, 1} x y z x y z x y z ≤ ≤ + + ≤ in three space( , , ). x y z Mathematical transformation from ( , , ) x y z space to ( , , ) u v w space maps th...

متن کامل

Sum Rules for Jacobi Matrices and Divergent Lieb-thirring Sums

Let Ej be the eigenvalues outside [−2, 2] of a Jacobi matrix with an − 1 ∈ ` and bn → 0, and μ′ the density of the a.c. part of the spectral measure for the vector δ1. We show that if bn / ∈ `, bn+1 − bn ∈ `, then ∑ j (|Ej | − 2) = ∞, and if bn ∈ `, bn+1 − bn / ∈ `, then ∫ 2 −2 ln(μ′(x))(4− x) dx = −∞. We also show that if an − 1, bn ∈ `, then the above integral is finite if and only if an+1 − ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2003

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil0317117m